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Abstract

The Gross Llewellyn Smith sum rule has been measured at di�erent values of four-

momentum transfer squared (Q2) by combining the precise CCFR neutrino data with data

from other deep-inelastic scattering experiments at lower values of Q2. A comparison

with the O(�3s) predictions of perturbative QCD yields a determination of �s and its

dependence on Q2 in the range 1GeV 2 < Q2 < 20GeV 2. Low Q2 tests have greater

sensitivity to �s(M
2
Z) than high Q2 tests, since at low Q2 �s is large and changing rapidly.



To leading order in perturbative QCD, the structure function xF3 measured in �N

scattering is the di�erence between the quark and anti-quark momentum distributions. The

GLS sum rule predicts that the integral over x of F3 is simply 3, the number of valence quarks

in a nucleon [1]. There are corrections to the sum rule which introduce a dependence of the

GLS integral on �s, the strong coupling constant, in the following way [2]:Z 1
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where a and b depend on the number of quark avors, nf , accessible at a given x and four-

momentum transfer squared, Q2. �HT represents a higher twist contribution, which has been

estimated using QCD sum rules, a Vector Meson Dominance Model, and a Non-relativistic

Quark Model to be 0:27� 0:14=Q2(GeV 2)[3]. The Q2 dependence of �s is as follows [4]:
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The challenge in evaluating
R
F3dx is that for a given Q

2 value, there is a limited x region

that is accessible by any one experiment. The incoming neutrino energy imposes a minimum x

constraint and detector acceptance imposes a maximum x constraint. CCFR has data at low
Q2 and low x (10�2 < x < 10�1), and at high Q2 and high x (10�1 < x < 1). The CCFR

detector and the measurement of xF3 have been described in detail elsewhere [5]. One way
to evaluate

R
F3dx over all x is to extrapolate xF3 from all Q2 regions to a Q2

0 value where

the data is predominantly at low x. A previous CCFR analysis found that for Q2
0 = 3GeV 2,R

F3dx = 2:50� :018(stat) � :078(syst)[6]. By using QCD to extrapolate xF3 to Q
2
0 however,

one introduces �s a priori into the problem. Furthermore, higher twist e�ects are not included

in QCD extrapolations.
The goal of this analysis is to evaluate

R
F3dx without introducing any ad hoc Q2 de-

pendence. By combining the CCFR data with that of several other experiments enough data
at di�erent energies are obtained to measure

R
F3dx without Q2 extrapolation at values of Q2

between 1GeV 2 and 20GeV 2. The xF3 measurements from experiments WA59, WA25, SKAT,

FNAL-E180 [7], and BEBC-Gargamelle [8] were normalized to the CCFR xF3 measurements

in the Q2 regions of overlap and then were used along with the CCFR xF3 data. Furthermore,
since at high x the structure function F2 � xF3, one can use F2 data from e�N scattering at

SLAC [9] in this region (x > 0:5) by normalizing it to the ratio of xF3=F2 as measured in the
CCFR data. This is particularly important at low Q2 where there is no xF3 data at high x. The

published CCFR xF3 data were modi�ed for new electroweak radiative corrections (Bardin[10]).

In addition, the CCFR data were corrected for the contribution from the strange sea [11] of
events containing two oppositely charged muons. Finally, by comparing the F2 values of CCFR

to those from SLAC [9], NMC and BCDMS [12], the overall normalization of the CCFR data
was determined to be 1:019� 0:011. To integrate over all x, this analysis sums the binned data

for x > 0:02. For the contribution to the integral at lower x, the data below x = 0:1 is �t

to a power law and then that function is integrated over 0 < x < 0:02. Figure 1a shows the
combined xF3 data and the corrected F2 data for the four lowest Q

2 bins, as well as the power

law �t to the low x data and the �2 for those �ts. To be consistent with theoretical predictions

of higher twist e�ects on the sum rule, the �-nucleon elastic contribution (described in [8]) was
added to the integral, and both the elastic and inelastic contributions were corrected for target

mass e�ects [8]. Figure 1b shows
R
F3dx as a function of Q2 and the theoretical prediction (see

equations 1 and 2) assuming �MS
(5) = 150MeV .



Figure 1: (a)xF3 vs. x for four di�erent low Q2 values. The function shown is a power law �t

to data below x = 0:1. (b)
R
F3dx vs. Q2, and the theoretical prediction for the integral for

�MS
(5) = 150MeV . The dashed lines represent the uncertainty in the higher twist correction.

One can determine �s(Q
2) from

R
F3dx by using equation 1. The values of �s(Q

2)

determined by this technique are shown in �gure 2. The curves plotted in �gure 2 show the
evolution of �s as a function of Q2 (see equation 2), for two di�erent values of �MS. From
this plot it is clear that low Q2 measurements have large potential to constrain �s not only

because �s is large in this kinematic region, but because it is changing rapidly as a function of
Q2. However, the higher twist uncertainty in

R
F3dx is also large in this kinematic region and

is the largest single systematic error in this analysis. Evolving the four lowest data points for
�s to M

2
Z , we obtain the following value for �s(M

2
Z):

�s(M
2
Z) = 0:108�:003

:005(stat) �:004(syst) �
:004
:006 (higher twist)

For comparison with other low Q2 �s measurements, this corresponds to �s(Q
2 =

3:0GeV 2) = 0:26�:02
:03(stat) �:02(syst) �:03(higher twist). Figure 2 puts this result in the

context of other measurements by plotting them as a function of Q2. In general, the low Q2

data systematically favor a lower �MS than do the higher Q2 data. The result from this anal-

ysis is consistent with low energy measurements of �s. In particular, it is consistent with

the CCFR determination of �s from the Q2 evolution of xF3 and F2 for Q2 > 15GeV 2

(�s(M
2
Z) = 0:111 � :004), and about 2� lower than that measured from the high Q2 data

[13]. With future experimental improvements (Fermilab NuTeV experiment) and improved

theoretical work on higher twist corrections, this fundamental prediction of QCD has promise
for being a stringent test of the model.
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